Deprecated: class-phpmailer.php is deprecated since version 5.5.0! Use wp-includes/PHPMailer/PHPMailer.php instead. The PHPMailer class has been moved to wp-includes/PHPMailer subdirectory and now uses the PHPMailer\PHPMailer namespace. in /var/www/wp-includes/functions.php on line 4963
An Engineered R-Type Pyocin Is a Highly Specific and Sensitive Bactericidal Agent for the Food-Borne Pathogen Escherichia coli O157:H7 - Pylum Biosciences

An Engineered R-Type Pyocin Is a Highly Specific and Sensitive Bactericidal Agent for the Food-Borne Pathogen Escherichia coli O157:H7

By: Dean Scholl, Mike Cooley, Steve R. Williams, Dana Gebhart, David Martin, Anna Bates, and Robert Mandrell | Source: Antimicrobial Agents and Chemotherapy

Some strains of Pseudomonas aeruginosa produce R-type pyocins, which are high-molecular-weight phage tail-like protein complexes that have bactericidal activity against other Pseudomonas strains. These particles recognize and bind to bacterial surface structures via tail fibers, their primary spectrum determinant. R-type pyocins kill the cell by contracting a sheath-like structure and inserting their hollow core through the cell envelope, resulting in dissipation of the cellular membrane potential. We have retargeted an R-type pyocin to Escherichia coli O157:H7 by fusing a tail spike protein from an O157-specific phage, ΦV10, to the pyocin tail fiber. The ΦV10 tail spike protein recognizes and degrades the O157 lipopolysaccharide. This engineered pyocin, termed AVR2-V10, is sensitive and specific, killing 100% of diverse E. coli O157:H7 isolates but no other serotypes tested. AVR2-V10 can kill E. coli O157:H7 on beef surfaces, making it a candidate agent for the elimination of this pathogen from food products. All rare AVR2-V10-resistant mutants isolated and examined have lost the ability to produce the O157 antigen and are expected to have compromised virulence. In addition, E. coli O157:H7 exposed to and killed by AVR2-V10 do not release Shiga toxin, as is often the case with many antibiotics, suggesting potential therapeutic applications. The demonstration that a novel R-type pyocin can be created in the laboratory by fusing a catalytic tail spike from the family Podoviridae to a tail fiber of a member of the family Myoviridae is evidence that the plasticity observed among bacteriophage tail genes can, with modern molecular techniques, be exploited to produce nonnatural, targeted antimicrobial agents.